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Introduction

This document briefly describes a weighting 
strategy for use with the Climate Model Inter-
comparison Project, Phase 5 (CMIP5) multi-
model archive in the Fourth National Climate 
Assessment (NCA4). This approach considers 
both skill in the climatological performance 
of models over North America and the inter-
dependency of models arising from common 
parameterizations or tuning practices. The 
method exploits information relating to the 
climatological mean state of a number of pro-
jection-relevant variables as well as long-term 
metrics representing long-term statistics of 
weather extremes. The weights, once comput-
ed, can be used to simply compute weighted 
mean and significance information from an 
ensemble containing multiple initial condi-
tion members from co-dependent models of 
varying skill.

Our methodology is based on the concepts 
outlined in Sanderson et al. 2015,1 and the 
specific application to the NCA4 is also de-
scribed in that paper. The approach produces 
a single set of model weights that can be used 
to combine projections into a weighted mean 
result, with significance estimates which also 
treat the weighting appropriately.

The method, ideally, would seek to have two 
fundamental characteristics:

•	 If a duplicate of one ensemble member is 
added to the archive, the resulting mean 
and significance estimate for future change 
computed from the ensemble should not 
change.

•	 If a demonstrably unphysical model is 
added to the archive, the resulting mean 
and significance estimates should also not 
change.

Method

The analysis requires an assessment of both 
model skill and an estimate of intermodel 
relationships—for which intermodel root 
mean square difference is taken as a proxy. 
The model and observational data used here 
is for the contiguous United States (CONUS), 
and most of Canada, using high-resolution 
data where available. Intermodel distances are 
computed as simple root mean square differ-
ences. Data is derived from a number of mean 
state fields and a number of fields that rep-
resent extreme behavior—these are listed in 
Table B.1. All fields are masked to only include 
information from CONUS/Canada. 

http://doi.org...7930/J06T0JS3
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Table B.1: Observational datasets used as observations.

Field Description Source Reference Years

TS Surface Temperature 
(seasonal)

Livneh, 
Hutchinson

(Hopkinson et al. 2012;3 Hutchinson et 
al. 2009;4 Livneh et al. 20135) 1950–2011

PR Mean Precipitation 
(seasonal)

Livneh, 
Hutchinson

(Hopkinson et al. 2012;3 Hutchinson et 
al. 2009;4 Livneh et al. 20135) 1950–2011

RSUT TOA Shortwave Flux 
(seasonal) CERES-EBAF (Wielicki et al. 19966) 2000–2005

RLUT TOA Longwave Flux 
(seasonal) CERES-EBAF (Wielicki et al. 19966) 2000–2005

T Vertical Temperature 
Profile (seasonal) AIRS* (Aumann et al. 20037) 2002–2010

RH Vertical Humidity Pro-
file (seasonal) AIRS (Aumann et al. 20037) 2002–2010

PSL Surface Pressure  
(seasonal) ERA-40 (Uppala et al. 20058) 1970–2000

Tnn Coldest Night Livneh, 
Hutchinson

(Hopkinson et al. 2012;3 Hutchinson et 
al. 2009;4 Livneh et al. 20135) 1950–2011

Txn Coldest Day Livneh, 
Hutchinson

(Hopkinson et al. 2012;3 Hutchinson et 
al. 2009;4 Livneh et al. 20135) 1950–2011

Tnx Warmest Night Livneh, 
Hutchinson

(Hopkinson et al. 2012;3 Hutchinson et 
al. 2009;4 Livneh et al. 20135) 1950–2011

Txx Warmest day Livneh, 
Hutchinson

(Hopkinson et al. 2012;3 Hutchinson et 
al. 2009;4 Livneh et al. 20135) 1950–2011

rx5day seasonal max. 5-day 
total precip.

Livneh, 
Hutchinson

(Hopkinson et al. 2012;3 Hutchinson et 
al. 2009;4 Livneh et al. 20135) 1950–2011

The root mean square error (RMSE) between 
observations and each model can be used to 
produce an overall ranking for model simu-

lations of the North American climate. Figure 
B.1 shows how this metric is influenced by 
different component variables.
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Figure B.1: A graphical representation of the intermodel distance matrix for CMIP5 and a set of observed values. Each 
row and column represents a single climate model (or observation). All scores are aggregated over seasons (individual 
seasons are not shown). Each box represents a pairwise distance, where warm (red) colors indicate a greater distance. 
Distances are measured as a fraction of the mean intermodel distance in the CMIP5 ensemble. (Figure source: Sand-
erson et al. 20172).
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Figure B.2: Model skill and independence weights for the CMIP5 archive evaluated over the North American domain. 
Contours show the overall weighting, which is the product of the two individual weights. (Figure source: Sanderson  
et al. 20172).
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Models are downweighted for poor skill if 
their multivariate combined error is signifi-
cantly greater than a “skill radius” term, 
which is a free parameter of the approach. The 
calibration of this parameter is determined 
through a perfect model study.2 A pairwise 
distance matrix is computed to assess inter-
model RMSE values for each model pair in 
the archive, and a model is downweighted for 
dependency if there exists another model with 
a pairwise distance to the original model sig-
nificantly smaller than a “similarity radius.” 
This is the second parameter of the approach, 
which is calibrated by considering known 
relationships within the archive. The resulting 
skill and independence weights are multiplied 
to give an overall “combined” weight—illus-
trated in Figure B.2 for the CMIP5 ensemble 
and listed in Table B.2.

The weights are used in the Climate Science 
Special Report (CSSR) to produce weighted 
mean and significance maps of future change, 
where the following protocol is used:

•	 Stippling—large changes, where the 
weighted multimodel average change is 
greater than double the standard deviation 
of the 20-year mean from control simula-
tions runs, and 90% of the weight corre-
sponds to changes of the same sign.

•	 Hatching—No significant change, where 
the weighted multimodel average change 
is less than the standard deviation of the 20-
year means from control simulations runs.

•	 Whited out—Inconclusive, where the 
weighted multimodel average change is 
greater than double the standard deviation 
of the 20-year mean from control runs and 
less than 90% of the weight corresponds to 
changes of the same sign.

We illustrate the application of this method 
to future projections of precipitation change 
under the higher scenario (RCP8.5) in Figure 
B.3. The weights used in the report are cho-
sen to be conservative, minimizing the risk of 
overconfidence and maximizing out-of-sam-
ple predictive skill for future projections. This 
results (as in Figure B.3) in only modest differ-
ences in the weighted and unweighted maps. 
It is shown in Sanderson et al. 20172 that a 
more aggressive weighting strategy, or one fo-
cused on a particular variable, tends to exhibit 
a stronger constraint on future change relative 
to the unweighted case. It is also notable that 
tradeoffs exist between skill and replication in 
the archive (evident in Figure B.2), such that 
the weighting for both skill and uniqueness 
has a compensating effect. As such, mean 
projections using the CMIP5 ensemble are not 
strongly influenced by the weighting. Howev-
er, the establishment of the weighting strategy 
used in the CSSR provides some insurance 
against a potential case in future assessments 
where there is a highly replicated, but poorly 
performing model.
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Table B.2: Uniqueness, skill, and combined weights for CMIP5.

Uniqueness Weight Skill Weight Combined

ACCESS1-0 0.60 1.69 1.02

ACCESS1-3 0.78 1.40 1.09

BNU-ESM 0.88 0.77 0.68

CCSM4 0.43 1.57 0.68

CESM1-BGC 0.44 1.46 0.64

CESM1-CAM5 0.72 1.80 1.30

CESM1-FASTCHEM 0.76 0.50 0.38

CMCC-CESM 0.98 0.36 0.35

CMCC-CM 0.89 1.21 1.07

CMCC-CMS 0.59 1.23 0.73

CNRM-CM5 0.94 1.08 1.01

CSIRO-Mk3-6-0 0.95 0.77 0.74

CanESM2 0.97 0.65 0.63

FGOALS-g2 0.97 0.39 0.38

GFDL-CM3 0.81 1.18 0.95

GFDL-ESM2G 0.74 0.59 0.44

GFDL-ESM2M 0.72 0.60 0.43

GISS-E2-H-p1 0.38 0.74 0.28

GISS-E2-H-p2 0.38 0.69 0.26

GISS-E2-R-p1 0.38 0.97 0.37

GISS-E2-R-p2 0.37 0.89 0.33

HadCM3 0.98 0.89 0.87

HadGEM2-AO 0.52 1.19 0.62

HadGEM2-CC 0.50 1.21 0.60

HadGEM2-ES 0.43 1.40 0.61

IPSL-CM5A-LR 0.79 0.92 0.72

IPSL-CM5A-MR 0.83 0.99 0.82

IPSL-CM5B-LR 0.92 0.63 0.58

MIROC-ESM 0.54 0.28 0.15

MIROC-ESM-CHEM 0.54 0.32 0.17

MIROC4h 0.97 0.73 0.71

MIROC5 0.89 1.24 1.11

MPI-ESM-LR 0.35 1.38 0.49

MPI-ESM-MR 0.38 1.37 0.52

MPI-ESM-P 0.36 1.54 0.56

MRI-CGCM3 0.51 1.35 0.68

MRI-ESM1 0.51 1.31 0.67

NorESM1-M 0.83 1.06 0.88

bcc-csm1-1 0.88 0.62 0.55

bcc-csm1-1-m 0.90 0.89 0.80

inmcm4 0.95 1.13 1.08
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Figure B.3: Projections of precipitation change over North America in 2080–2100, relative to 1980–2000 under the higher 
scenario (RCP8.5). (a) Shows the simple unweighted CMIP5 multimodel average, using the significance methodology 
from IPCC9; (b) shows the weighted results as outlined in Section 3 for models weighted by uniqueness only; and (c) 
shows weighted results for models weighted by both uniqueness and skill. (Figure source: Sanderson et al. 20172).
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